Combustion in Internal Combustion Engine

In combustion reactions, rapid oxidation of combustible elements of the fuel results in energy release as combustion products are formed. The three major combustible chemical elements in most common fuels are carbon, hydrogen, and sulfur. Although sulfur is usually a relatively unimportant contributor to the energy released, it can be a significant cause of pollution and corrosion.
The emphasis in this section is on hydrocarbon fuels, which contain hydrogen, carbon, sulfur, and possibly other chemical substances. Hydrocarbon fuels may be liquids, gases, or solids such as coal.
Liquid hydrocarbon fuels are commonly derived from crude oil through distillation and cracking processes.
Examples are gasoline, diesel fuel, kerosene, and other types of fuel oils. The compositions of liquid fuels are commonly given in terms of mass fractions. For simplicity in combustion calculations, gasoline is often considered to be octane, C8H18, and diesel fuel is considered to be dodecane, C12H26.
Gaseous hydrocarbon fuels are obtained from natural gas wells or are produced in certain chemical processes. Natural gas normally consists of several different hydrocarbons, with the major constituent being methane, CH4. The compositions of gaseous fuels are commonly given in terms of mole fractions.
Both gaseous and liquid hydrocarbon fuels can be synthesized from coal, oil shale, and tar sands. The composition of coal varies considerably with the location from which it is mined. For combustion calculations, the makeup of coal is usually expressed as an ultimate analysis giving the composition on a mass basis in terms of the relative amounts of chemical elements (carbon, sulfur, hydrogen, nitrogen, oxygen) and ash. Coal combustion is considered further in Chapter 8, Energy Conversion.
A fuel is said to have burned completely if all of the carbon present in the fuel is burned to carbon dioxide, all of the hydrogen is burned to water, and all of the sulfur is burned to sulfur dioxide. In practice, these conditions are usually not fulfilled and combustion is incomplete. The presence of carbon monoxide (CO) in the products indicates incomplete combustion. The products of combustion of actual combustion reactions and the relative amounts of the products can be determined with certainty only by experimental means. Among several devices for the experimental determination of the composition of products of combustion are the Orsat analyzer, gas chromatograph, infrared analyzer, and flame ionization detector. Data from these devices can be used to determine the makeup of the gaseous products of combustion. Analyses are frequently reported on a “dry” basis: mole fractions are determined for all gaseous products as if no water vapor were present. Some experimental procedures give an analysis including the water vapor, however.
Since water is formed when hydrocarbon fuels are burned, the mole fraction of water vapor in the gaseous products of combustion can be significant. If the gaseous products of combustion are cooled at constant mixture pressure, the dew point temperature (Section 2.3, Ideal Gas Model) is reached when water vapor begins to condense. Corrosion of duct work, mufflers, and other metal parts can occur when water vapor in the combustion products condenses.
Oxygen is required in every combustion reaction. Pure oxygen is used only in special applications such as cutting and welding. In most combustion applications, air provides the needed oxygen. Idealizations are often used in combustion calculations involving air: (1) all components of air other than oxygen (O2) are lumped with nitrogen (N2). On a molar basis air is then considered to be 21% oxygen and 79% nitrogen. With this idealization the molar ratio of the nitrogen to the oxygen in combustion air is 3.76; (2) the water vapor present in air may be considered in writing the combustion equation or ignored. In the latter case the combustion air is regarded as dry; (3) additional simplicity results by regarding the nitrogen present in the combustion air as inert. However, if high-enough temperatures are attained, nitrogen can form compounds, often termed NOX, such as nitric oxide and nitrogen dioxide.
Even trace amounts of oxides of nitrogen appearing in the exhaust of internal combustion engines can be a source of air pollution.
The minimum amount of air that supplies sufficient oxygen for the complete combustion of all the combustible chemical elements is the theoretical, or stoichiometic, amount of air. In practice, the amount of air actually supplied may be greater than or less than the theoretical amount, depending on the application. The amount of air is commonly expressed as the percent of theoretical air or the percent excess (or percent deficiency) of air. The air-fuel ratio and its reciprocal the fuel-air ratio, each of which can be expressed on a mass or molar basis, are other ways that fuel-air mixtures are described. Another is the equivalence ratio: the ratio of the actual fuel-air ratio to the fuel-air ratio for complete combustion with the theoretical amount of air. The reactants form a lean mixture when the equivalence ratio is less than unity and a rich mixture when the ratio is greater than unity.

Leave a Reply

About Me

My photo
Cairo, Cairo, Egypt, Egypt
I am the Leader of EME Team.
Powered by Blogger.